Compute CRV3 covariance matrices via a cluster
jackknife as described in MacKinnon, Nielsen & Webb
(2022) for objects of type fixest
Source: R/vcov3_fixest.R
vcov_CR3J.fixest.Rd
Compute CRV3 covariance matrices via a cluster
jackknife as described in MacKinnon, Nielsen & Webb
(2022) for objects of type fixest
Usage
# S3 method for fixest
vcov_CR3J(
obj,
cluster,
type = "CRV3",
return_all = FALSE,
absorb_cluster_fixef = TRUE,
...
)
Arguments
- obj
An object of type fixest
- cluster
A clustering vector
- type
"CRV3" or "CRV3J" following MacKinnon, Nielsen & Webb. CRV3 by default
- return_all
Logical scalar, FALSE by default. Should only the vcov be returned (FALSE) or additional results (TRUE)
- absorb_cluster_fixef
TRUE by default. Should the cluster fixed effects be projected out? This increases numerical stability.
- ...
other function arguments passed to 'vcov'
References
MacKinnon, James G., Morten Ørregaard Nielsen, and Matthew D. Webb. "Leverage, influence, and the jackknife in clustered regression models: Reliable inference using summclust." arXiv preprint arXiv:2205.03288 (2022).
Examples
# \donttest{
if(requireNamespace("summclust")
&& requireNamespace("haven")
&& requireNamespace("fixest")){
library(summclust)
library(haven)
library(fixest)
nlswork <- read_dta("http://www.stata-press.com/data/r9/nlswork.dta")
# drop NAs at the moment
nlswork <- nlswork[, c("ln_wage", "grade", "age", "birth_yr", "union", "race", "msp", "ind_code")]
nlswork <- na.omit(nlswork)
feols_fit <- feols(
ln_wage ~ union + race + msp + as.factor(birth_yr) + as.factor(age) + as.factor(grade),
data = nlswork)
# CRV3 standard errors
vcov <- vcov_CR3J(
obj = feols_fit,
cluster = ~ind_code,
type = "CRV3"
)
# CRV3 standard errors
vcovJN <- vcov_CR3J(
obj = feols_fit,
cluster = ~ind_code,
type = "CRV3J",
)
}
#> Error in feols(fml = ln_wage ~ 1, data = nlswork): Argument 'data' could not be evaluated. Problem: object 'nlswork' not
#> found.
# }